色欲AV蜜桃一区二区三_18禁免费高清啪啪网站_精品国产香蕉伊思人在线_国产成人精品一区二区三区无码_99精品久久久中文字幕

  設(shè)為主頁 加入收藏 English
 
 
 
 產(chǎn)品資料
 技術(shù)資料
 參考文獻(xiàn)
 
 

測(cè)量應(yīng)用案例-20200206

文件大?。?/strong>2.20
發(fā)布時(shí)間:2020-02-28
下載次數(shù):0

文獻(xiàn)名: Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid in Aqueous Solution Using Mn-doped ZnO/Graphene Nanocomposite Under LED Radiation

 

作者Roya Ebrahimi, Mahnaz Mohammadi, Afshin Maleki, Ali Jafari, Behzad Shahmoradi, Reza Rezaee, Mahdi Safari, Hiua Daraei, Omid Giahi, Kaan Yetilmezsoy & Shivaraju Harikaranahalli Puttaiah

Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

 

摘要: Chemical pesticides and herbicides are one of the most important pollutants in urban, agricultural and industrial wastewaters. Improper discharge of these compounds into water bodies’ cause harmful effects on both environment and human health. In this study, photocatalytic degradation of 2,4-Dichlorophenoxyacetic acid (usually called 2,4-D) was investigated using Mn-doped zinc oxide/graphene nanocomposite under light emitting diodes (LED) radiation. FTIR, AFM, DLS, Zeta potential, XRD, and SEM techniques were used to determine the characteristics of the nanocomposite. The effects of process-related parameters, such as the amount of nanocomposite, initial pH, 2,4-D concentrations, and contact time, on the photocatalytic degradation of the 2,4-D were studied. The results showed that the efficiency of photocatalytic degradation of 2,4-D decreased with an increase in the initial concentration of 2,4-D, while photocatalytic degradation efficiency increased by increasing the initial pH and the nano-catalyst content. The results showed that 66.2% of 2,4-D could be photocatalytically degraded using Mn-doped zinc oxide/graphene nanocomposite under LED radiation at optimal conditions (pH 5, initial Zn concentration of 10 mg L−1, nano-composite concentration of 2 g L−1, contact time of 120 min). Findings of this experimental study concluded that photocatalysis using Mn-doped zinc oxide/graphene nanocomposite under LED radiation could efficiently remove 2,4-D herbicide from aqueous media.

下載地址下載地址1
 
上海市普陀區(qū)嵐皋路567號(hào)1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957
美國布魯克海文儀器公司上海代表處 版權(quán)所有  管理登陸 ICP備案號(hào):滬ICP備19006074號(hào)-2 技術(shù)支持:化工儀器網(wǎng)